Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1143620210250020048
Korean Journal of Nuclear Medicine Technology
2021 Volume.25 No. 2 p.48 ~ p.54
Effect of Thermal Method on the Activation of Brown Adipose Tissue
You Yeon-Wook

Lee Chung-Wun
Ahn Jeong-Seon
Lee Dong-Eun
Moon Jong-Wun
Kim Yun-Cheol
Park So-Hyeon
Kim Tae-Sung
Abstract
Purpose: In 18F-FDG PET/CT, the absorption of 18F-FDG due to the activation of Brown Adipose Tissue (BAT) greatly interferes with the discrimination of lymph node malignant metastasis. Warming the patient's body temperature before and after injection of 18F-FDG to prevent FDG absorption by BAT is a safe and non-pharmacological approach. The purpose of this study was to identify and select patients with a high potential for BAT activation in advance, and to investigate whether BAT can inhibit FDG absorption when the body temperature is raised for a short time by directly applying heat to the target patient.

Materials and Methods: Among the patients who underwent 18F-FDG PET/CT at the National Cancer Center from January 2020 to December 2020, 825 female patients (415 in the thermal group, 410 in the non-thermal group) under 50 years old were included. The thermal group was administered heat for 10 minutes before injection of 18F-FDG. For statistical analysis, the Z test comparing the ratios between the two groups was used, and logistic regression analysis was performed to correct for important variables (BMI, outdoor temperature, blood sugar) according to the results of the previous retrospective study.

Results: Among 825 patients, 19 patients with BAT activated (Thermal group: 5(1.2%), Non-thermal group: 14(3.41%)) accounted for 2.3% of the total. As a result of performing the Z test to compare the ratios between the two groups, the activation of BAT in the thermal group was significantly decreased (P=0.034). In the univariate logistic regression analysis, the activation of BAT was also decreased in the thermal group (OR: 0.34, P<0.05). In the multivariate results, BAT activation increased in patients younger than 45 years old (OR: 4.46, P<0.05) and outdoor temperature less than 13.2 degrees (OR: 9.97, P<0.05). BAT activation tended to decrease in the thermal group, but there was no significant difference (OR: 0.37, P=0.066).

Conclusion: We confirmed that the activation of BAT tends to decrease by 62.5% in the group subjected to the thermal method, and it will be of great help in preventing FDG absorption of BAT more effectively in the future.
KEYWORD
Brown adipose tissue (BAT), Thermal method, PET/CT
FullTexts / Linksout information
Listed journal information